Friday, July 20, 2018

Sequence Variation of Rare Outer Membrane Protein β-Barrel Domains in Clinical Strains Provides Insights into the Evolution of Treponema pallidum subsp. pallidum, the Syphilis Spirochete

http://mbio.asm.org/content/9/3/e01006-18.short

ABSTRACT

In recent years, considerable progress has been made in topologically and functionally characterizing integral outer membrane proteins (OMPs) of Treponema pallidum subspecies pallidum, the syphilis spirochete, and identifying its surface-exposed β-barrel domains. Extracellular loops in OMPs of Gram-negative bacteria are known to be highly variable. We examined the sequence diversity of β-barrel-encoding regions of tprC, tprD, and bamA in 31 specimens from Cali, Colombia; San Francisco, California; and the Czech Republic and compared them to allelic variants in the 41 reference genomes in the NCBI database. To establish a phylogenetic framework, we used T. pallidum 0548 (tp0548) genotyping and tp0558 sequences to assign strains to the Nichols or SS14 clades. We found that (i) β-barrels in clinical strains could be grouped according to allelic variants in T. pallidum subsp. pallidum reference genomes; (ii) for all three OMP loci, clinical strains within the Nichols or SS14 clades often harbored β-barrel variants that differed from the Nichols and SS14 reference strains; and (iii) OMP variable regions often reside in predicted extracellular loops containing B-cell epitopes. On the basis of structural models, nonconservative amino acid substitutions in predicted transmembrane β-strands of T. pallidum repeat C (TprC) and TprD2 could give rise to functional differences in their porin channels. OMP profiles of some clinical strains were mosaics of different reference strains and did not correlate with results from enhanced molecular typing. Our observations suggest that human host selection pressures drive T. pallidum subsp. pallidum OMP diversity and that genetic exchange contributes to the evolutionary biology of T. pallidum subsp. pallidum. They also set the stage for topology-based analysis of antibody responses to OMPs and help frame strategies for syphilis vaccine development.

IMPORTANCE

Despite recent progress characterizing outer membrane proteins (OMPs) of Treponema pallidum, little is known about how their surface-exposed, β-barrel-forming domains vary among strains circulating within high-risk populations. In this study, sequences for the β-barrel-encoding regions of three OMP loci, tprC, tprD, and bamA, in T. pallidum subsp. pallidum isolates from a large number of patient specimens from geographically disparate sites were examined. Structural models predict that sequence variation within β-barrel domains occurs predominantly within predicted extracellular loops. Amino acid substitutions in predicted transmembrane strands that could potentially affect porin channel function were also noted. Our findings suggest that selection pressures exerted within human populations drive T. pallidum subsp. pallidum OMP diversity and that recombination at OMP loci contributes to the evolutionary biology of syphilis spirochetes. These results also set the stage for topology-based analysis of antibody responses that promote clearance of T. pallidum subsp. pallidum and frame strategies for vaccine development based upon conserved OMP extracellular loops.

Monday, October 23, 2017

The major outer sheath protein forms distinct conformers and multimeric complexes in the outer membrane and periplasm of Treponema denticola

Recent Article: https://www.nature.com/articles/s41598-017-13550-6

The major outer sheath protein (MOSP) is a prominent constituent of the cell envelope of Treponema denticola (TDE) and one of its principal virulence determinants. Bioinformatics predicts that MOSP consists of N- and C-terminal domains, MOSPN and MOSPC. Biophysical analysis of constructs refolded in vitro demonstrated that MOSPC, previously shown to possess porin activity, forms amphiphilic trimers, while MOSPN forms an extended hydrophilic monomer. In TDE and E. coliexpressing MOSP with a PelB signal sequence (PelB-MOSP), MOSPC is OM-embedded and surface-exposed, while MOSPN resides in the periplasm. Immunofluorescence assay, surface proteolysis, and novel cell fractionation schemes revealed that MOSP in TDE exists as outer membrane (OM) and periplasmic trimeric conformers; PelB-MOSP, in contrast, formed only OM-MOSP trimers. Although both conformers form hetero-oligomeric complexes in TDE, only OM-MOSP associates with dentilisin. Mass spectrometry (MS) indicated that OM-MOSP interacts with proteins in addition to dentilisin, most notably, oligopeptide-binding proteins (OBPs) and the β-barrel of BamA. MS also identified candidate partners for periplasmic MOSP, including TDE1658, a spirochete-specific SurA/PrsA ortholog. Collectively, our data suggest that MOSP destined for the TDE OM follows the canonical BAM pathway, while formation of a stable periplasmic conformer involves an export-related, folding pathway not present in E. coli.

The Treponema pallidum Outer Membrane

Recent Article: https://link.springer.com/chapter/10.1007/82_2017_44

The outer membrane (OM) of Treponema pallidum, the uncultivatable agent of venereal syphilis, has long been the subject of misconceptions and controversy. Decades ago, researchers postulated that T. pallidum’s poor surface antigenicity is the basis for its ability to cause persistent infection, but they mistakenly attributed this enigmatic property to the presence of a protective outer coat of serum proteins and mucopolysaccharides. Subsequent studies revealed that the OM is the barrier to antibody binding, that it contains a paucity of integral membrane proteins, and that the preponderance of the spirochete’s immunogenic lipoproteins is periplasmic. Since the advent of recombinant DNA technology, the fragility of the OM, its low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative outer membrane proteins (OMPs) have complicated efforts to characterize molecules residing at the host–pathogen interface. We have overcome these hurdles using the genomic sequence in concert with computational tools to identify proteins predicted to form β-barrels, the hallmark conformation of OMPs in double-membrane organisms and evolutionarily related eukaryotic organelles. We also have employed diverse methodologies to confirm that some candidate OMPs do, in fact, form amphiphilic β-barrels and are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMP repertoire is more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.

Friday, May 27, 2016

Consensus Phylogenetic trees of Fifteen Prokaryotic Aminoacyl-tRNA Synthetase Polypeptides based on Euclidean Geometry of All-Pairs Distances and Concatenation

An interesting one from my friend. 


For comments and quarries please write to  rbargaje[at]systemsbiology[dot]org 

Most molecular phylogenetic trees depict the relative closeness or the extent of similarity among a set of taxa based on comparison of sequences of homologous genes or proteins. Since the tree topology for individual monogenic traits varies among the same set of organisms and does not overlap taxonomic hierarchy, hence there is a need to generate multidimensional phylogenetic trees. Phylogenetic trees were constructed for 119 prokaryotes representing 2 phyla under Archaea and 11 phyla under Bacteria after comparing multiple sequence alignments for 15 different aminoacyl-tRNA synthetase polypeptides. The topology of Neighbor Joining (NJ) trees for individual tRNA synthetase polypeptides varied substantially. We use Euclidean geometry to estimate all-pairs distances in order to construct phylogenetic trees. Further, we used a novel 'Taxonomic fidelity' algorithm to estimate clade by clade similarity between the phylogenetic tree and the taxonomic tree. We find that, as compared to trees for individual tRNA synthetase polypeptides and rDNA sequences, the topology of our Euclidean tree and that for aligned and concatenated sequences of 15 proteins are closer to the taxonomic trees and offer the best consensus. We have also aligned sequences after concatenation, and find that by changing the order of sequence joining prior to alignment, the tree topologies vary. In contrast, changing the types of polypeptides in the grouping for Euclidean trees does not affect the tree topologies. We show that a consensus phylogenetic tree of 15 polypeptides from 14 aminoacyl-tRNA synthetases for 119 prokaryotes using Euclidean geometry exhibits better taxonomic fidelity than trees for individual tRNA synthetase polypeptides as well as 16S rDNA. We have also examined Euclidean N-dimensional trees for 15 tRNA synthetase polypeptides which give the same topology as that constructed after amalgamating 3-dimensional Euclidean trees for groups of 3 polypeptides. Euclidean N-dimensional trees offer a reliable future to multi-genic molecular phylogenetics.

Prediction of peptidoglycan hydrolases- a new class of antibacterial proteins

Recent article from our lab: 

 Read more at: http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-2753-8

 For comments and quarries please write to me or ashok[at]iiserb.ac.in

Background

The efficacy of antibiotics against bacterial infections is decreasing due to the development of resistance in bacteria, and thus, there is a need to search for potential alternatives to antibiotics. In this scenario, peptidoglycan hydrolases can be used as alternate antibacterial agents due to their unique property of cleaving peptidoglycan cell wall present in both gram-positive and gram-negative bacteria. Along with a role in maintaining overall peptidoglycan turnover in a cell and in daughter cell separation, peptidoglycan hydrolases also play crucial role in bacterial pathophysiology requiring development of a computational tool for the identification and classification of novel peptidoglycan hydrolases from genomic and metagenomic data.

Results

In this study, the known peptidoglycan hydrolases were divided into multiple classes based on their site of action and were used for the development of a computational tool ‘HyPe’ for identification and classification of novel peptidoglycan hydrolases from genomic and metagenomic data. Various classification models were developed using amino acid and dipeptide composition features by training and optimization of Random Forest and Support Vector Machines. Random Forest multiclass model was selected for the development of HyPe tool as it showed up to 71.12 % sensitivity, 99.98 % specificity, 99.55 % accuracy and 0.80 MCC in four different classes of peptidoglycan hydrolases. The tool was validated on 24 independent genomic datasets and showed up to 100 % sensitivity and 0.94 MCC. The ability of HyPe to identify novel peptidoglycan hydrolases was also demonstrated on 24 metagenomic datasets.

Conclusions

The present tool helps in the identification and classification of novel peptidoglycan hydrolases from complete genomic or metagenomic ORFs. To our knowledge, this is the only tool available for the prediction of peptidoglycan hydrolases from genomic and metagenomic data.

Keywords

Peptidoglycan hydrolase N-acetylglucosaminidase N-acetylmuramidases Lytic transglycosylases Endopeptidase N-acetylmuramoyl-L-alanine Carboxypeptidase Cell wall hydrolases Support Vector Machine Random Forest

StumbleUpon